КОСМИЧЕСКИЙ КОРАБЛЬ ШАТТЛ: КОНСТРУКЦИЯ - significado y definición. Qué es КОСМИЧЕСКИЙ КОРАБЛЬ ШАТТЛ: КОНСТРУКЦИЯ
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es КОСМИЧЕСКИЙ КОРАБЛЬ ШАТТЛ: КОНСТРУКЦИЯ - definición

КОСМИЧЕСКИЙ АППАРАТ (КОСМИЧЕСКИЙ КОРАБЛЬ), СПОСОБНЫЙ ПЕРЕМЕЩАТЬСЯ МЕЖДУ ЗВЁЗДАМИ
Звездолет; Межзвёздный космический корабль; Межзвездный космический корабль
  • Сверхсветовой прыжок звездолёта в представлении художника

КОСМИЧЕСКИЙ КОРАБЛЬ ШАТТЛ: КОНСТРУКЦИЯ      
К статье КОСМИЧЕСКИЙ КОРАБЛЬ ШАТТЛ
КК "Шаттл" состоит из трех основных элементов: воздушно-космического самолета "Орбитер", многоразовых ракетных ускорителей и сбрасываемого топливного блока.
"Орбитер". Этот воздушно-космический самолет имеет три основных двигателя для вывода на орбиту, служебные системы и систему управления и наведения, а также теплозащиту, необходимую для возвращения на Землю. В "Орбитере" находятся экипаж и полезный груз. Этот летательный аппарат вместе с крыльями и шасси для посадки имеет длину 34,2 м, высоту 17,3 м и размах крыльев 23,8 м. Основной конструкционный материал - алюминий; используются также титан, композиционные и другие специальные легкие и прочные материалы. Сухая масса корабля варьируется в диапазоне от 80 977 до 82 166 кг. "Орбитер" состоит из трех основных частей: 1) носовой части, которая включает отсек экипажа, основное электронное оборудование и передние двигатели системы ориентации; 2) центральной части фюзеляжа с двумя крыльями, содержащей грузовой отсек и систему электропитания; 3) кормовой части, в которой находятся основные двигатели и вспомогательная система электропитания, а также вертикальное оперение (киль) и задние двигатели системы ориентации.
Отсек экипажа. Отсек экипажа имеет три уровня. Самый верхний уровень - летная палуба, с которой происходит управление полетом. Во время взлета и приземления на ней находятся командир, пилот и два специалиста по операциям. Летная палуба имеет десять иллюминаторов: шесть передних (по три на командира и пилота), два верхних (для наблюдений) и два задних (для обзора грузового отсека).
На средней палубе находятся шкафы, кухня, система переработки отходов, спальное помещение (спальные места или спальные мешки) и основание шлюзовой камеры, через которую космонавты выходят из корабля при проведении работ в открытом космосе. Во время взлета и спуска на средней палубе могут находиться до пяти человек. Боковой люк средней палубы служит для входа и выхода экипажа, когда корабль находится на Земле. Под средней палубой размещаются часть агрегатов системы жизнеобеспечения и кладовая.
Грузовой отсек. Отличительной особенностью "Орбитера" является отсек полезного груза, в котором могут располагаться космический аппарат или лабораторные модули до 5 м в диаметре и 18 м длиной. Вес полезной нагрузки зависит от высоты и наклонения выбранной орбиты полета корабля. Корабли могут выводить на околоземную орбиту до 25 000 кг; до 15 000 кг может быть возвращено на Землю.
Для перемещения громоздких предметов космонавты могут использовать дистанционный манипулятор - 15-метровую механическую руку (разработанную Канадским космическим агентством), которая в сложенном состоянии располагается вдоль стойки дверного проема грузового отсека. Спроектированный как некое подобие человеческой руки, манипулятор имеет плечо, плечевое сочленение, локтевой сустав, предплечье, кистевой сустав и концевые захваты. Каждое сочленение приводится в действие одним-тремя электромоторами в ответ на команды космонавта, управляющего манипулятором с задней части летной палубы. Плечо и предплечье выполнены из легких углепластиковых трубок. На земле "рука" не может поднять даже собственный вес, однако в космосе она доказала свою высокую эффективность при операциях выгрузки и погрузки спутников и доставки космонавтов для технического обслуживания спутников.
Основные и вспомогательные двигатели. Три основных двигателя, расположенных в хвостовой части фюзеляжа, обеспечивают выведение корабля на орбиту. Вместе с внешним топливным блоком и магистралями подачи компонентов топлива они представляют собой основную двигательную установку. Тяга каждого из них составляет 1760 кН при 104% от номинальной мощности на взлете. Каждый двигатель имеет два низконапорных и два высоконапорных турбонасосных агрегата (ТНА), камеру сгорания с профилированным соплом и электронную систему управления.
Горючее (водород) и окислитель (кислород) из топливного блока поступают в низконапорный ТНА, который поднимает давление компонентов топлива перед поступлением в основной ТНА, после которого они поступают в камеру сгорания. Основные ТНА приводятся в действие за счет неполного сгорания основного расхода водорода с частью кислорода; при этом образуется обогащенная водородом паровая смесь. Этот пар вращает турбины, а потом поступает в камеру сгорания, куда подается и остаток кислорода. Предварительно жидкий водород проходит через охлаждающий тракт двигателя, где испаряется и после этого вместе с кислородом используется для приведения в действие низконапорных насосов. В таком поэтапном цикле газификации и сгорания почти вся химическая энергия топлива превращается в тягу, и коэффициент полезного действия двигателя достигает 98%. Дублированная электронная система управления контролирует работу клапанов и регулирует уровень тяги, задаваемый бортовыми компьютерами. Блоки управления также контролируют температуру и число оборотов турбины и могут отключить двигатель при угрозе аварии. См. также РАКЕТА
.
Три блока вспомогательных ракетных двигателей, работающих на гидразине и азотном тетроксиде, обеспечивают управление кораблем и его ориентацию. Система ориентации имеет 38 основных двигателей (14 в носовом блоке и по 12 в каждом из двух хвостовых блоков) тягой до 3,82 кН. Кроме того, 6 верньерных двигателей ориентации тягой до 0,1 кН используются для точной регулировки положения корабля. Двигатели системы ориентации позволяют управлять положением корабля путем поворота его относительно трех осей (тангажа, крена и рысканья) и линейного перемещения вдоль этих осей. Включение двигателей осуществляется по командам бортовых компьютеров, которые реагируют на действия экипажа по управлению кораблем. Двигатели системы ориентации позволяют разворачивать корабль относительно Солнца, Земли или открытого космоса с целью регулирования температуры или наведения на цель, а также совершать маневры при приближении к другому космическому аппарату. Эти двигатели используются также при спуске, дросселируются и, наконец, выключаются при снижении скорости спуска до скорости звука; однако они недостаточно мощны, чтобы регулировать скорость при посадке.
Два двигателя системы орбитального маневрирования (ОМС) тягой 34,3 кН, которые расположены в гондолах в хвостовой части корабля, обеспечивают окончательное выведение на орбиту, маневры изменения орбиты и схода с нее при завершении полета.
Система электропитания. Электроснабжение корабля обеспечивается тремя топливными элементами, которые питаются от восьми баков с жидкими водородом и кислородом. Все топливные элементы и баки расположены в трюме под грузовым отсеком. В топливном элементе происходит реакция между водородом и кислородом в присутствии электролита для получения электричества. Основной продукт реакции - вода - используется для питья. Кислород для дыхания экипажа поступает из тех же баков. Энергии топливных элементов хватает на 10-14 сут в зависимости от энергопотребления корабля или на три недели при установке модуля с дополнительными баками. Три вспомогательных блока электропитания обеспечивают работу приводов для поворота двигателей во время спуска и аэродинамических органов управления при входе в атмосферу, а также торможение колес после приземления.
Система жизнеобеспечения. Корабль оборудован системой кондиционирования и обеспечения жизнедеятельности открытого типа, поскольку продолжительность полетов "Шаттла" слишком мала, чтобы оправдать применение более сложных и тяжелых систем замкнутого цикла с регенерацией отходов. В кабине экипажа поддерживается атмосферное давление на уровне моря и состав атмосферы 20% кислорода и 80% азота при 22. С. Кислород поступает из баков системы топливных элементов. Углекислый газ, выдыхаемый экипажем, извлекается из атмосферы в емкостях с гидроксидом лития; при этом образуются карбонат лития и водяной пар, который удаляется специальными поглотителями влаги. В длительных полетах могут также использоваться молекулярные фильтры для улавливания и последующего выбрасывания диоксида углерода; этот метод оказывается более выгодным по массе, чем применение большого числа емкостей с гидроксидом лития. Отходы жизнедеятельности собираются в устройстве для переработки отходов, в котором они обезвоживаются для удаления после полета, а пары воды выбрасываются в космос.
Температура в отсеке экипажа поддерживается системой терморегулирования, которая поглощает метаболическое тепло, выделяемое экипажем (за счет обдува отсека воздухом), и тепло, выделяемое электронным оборудованием (снимается водой, циркулирующей в термоплатах, на которых оно устанавливается), и переносит его на панели радиатора, расположенные на внутренней стороне створок грузового отсека. Отражательная способность панелей такова, что они остаются холодными, даже когда на них светит Солнце.
Бортовые компьютеры. Для нормального полета "Шаттла" необходим один компьютер. Чтобы обезопасить себя от возможных неисправностей, учитывая возможность ошибок программирования, пять одинаковых компьютеров выполняют две разные программы. Две пары компьютеров, работающие с программным обеспечением основного электронного оборудования, проверяют расчеты друг друга 440 раз в секунду и отбрасывают те результаты, которые наиболее сильно отличаются от трех других. Пятый компьютер, который выполняет резервную программу полета, может взять управление на себя при определенных условиях; это же может быть сделано экипажем. На наиболее ответственных этапах полета - выведении на орбиту и спуске - работают все пять компьютеров. Для рутинных операций на орбите достаточно одного или двух компьютеров, а остальные находятся в горячем резерве или выключены.
Система теплозащиты. Орбитальный корабль имеет теплозащитное покрытие, состоящее из 24 192 плиток и 3254 гибких матов изоляции, которое защищает его от аэродинамического нагрева при выведении на орбиту и спуске. Плитки поглощают тепло и затем постепенно излучают его. Теплозащитное покрытие состоит из нескольких различных материалов, каждый из которых рассчитан на свою тепловую нагрузку (максимально до 1650. С), которую должны выдерживать различные части корабля во время выведения и спуска. Наиболее теплостойкий материал плиток - серый композиционный углерод-графитовый материал - применен на носовой части и передней кромке крыльев. Черные плитки из стекловолокна использованы на тех участках поверхности (днище, передняя часть фюзеляжа и передняя кромка вертикального стабилизатора), где температуры составляют от 650 до 1260. С. Белые плитки из стекловолокна защищают участки (хвостовая часть, задняя часть носового отсека и боковые поверхности киля), где температура не превышает 650. С. Маты из кварцевого волокна и войлочные маты устанавливаются на тех поверхностях, которые подвергаются значительному аэродинамическому нагреву при выведении на орбиту.
Твердотопливные ускорители. Два твердотопливных ускорителя обеспечивают импульс тяги, необходимый для прохождения "Шаттла" через плотные нижние слои земной атмосферы. Каждый ускоритель имеет длину 45,7 м и диаметр 3,7 м (в районе топливных сегментов двигателя), стартовую массу 750 000 кг; масса выработанного ускорителя 87 000 кг. Ускоритель состоит из трех основных частей: юбки (хвостового отсека), двигателя и передней сборки.
Юбка служит опорой всей системе при старте. Стартовый вес корабля с ускорителями передается через юбки и восемь мощных пироболтов (по четыре на каждую юбку), которыми "Шаттл" крепится к стартовому столу. Эти болты устанавливаются во время сборки и освобождают систему в момент запуска ускорителя путем подрыва пиропатронов, срезающих гайки, которые держат болты. Два гидропривода, расположенные в юбке, управляют вектором тяги путем поворота сопла РДТТ в первые две минуты полета.
Корпус двигателя состоит из четырех последовательно расположенных сегментов, которые содержат смесевой твердотопливный заряд из алюминиевого порошка, перхлората аммония, полимерного связующего и катализатора скорости горения (окись железа) с поверхностным ингибитором горения. Размер сегментов определяется максимальным размером груза, который может быть перевезен в железнодорожном вагоне. При сборке сегменты соединяются соединительными скобами, через которые проходят стальные шпильки; по окружности нижнего торца сегмента сделана круговая канавка, в которую вставляется верхняя часть следующего сегмента. Три мощных резиновых кольца и специальный герметик обеспечивают герметичное уплотнение и предохраняют соединение от воздействия горячих газообразных продуктов сгорания.
Два центральных сегмента двигателя практически одинаковы. В переднем сегменте поверхность горения заряда имеет звездообразную форму, что позволяет увеличить тягу при отрыве от стартового стола; эта часть заряда выгорает непосредственно перед достижением максимума динамического давления на участке выведения. На верхнем днище корпуса двигателя (переднего сегмента) крепится устройство зажигания. Задний сегмент сужается до образования горловины сопла. К ней через гибкий переходник крепится расширяющаяся часть сопла.
В передней сборке находится система спасения ускорителя. Вытяжной (тормозной) парашют стабилизирует ускоритель во время спуска, а затем вытягивает три основных парашюта, на которых ускоритель опускается в океан. Для спуска достаточно двух основных парашютов, третий используется как запасной. Поскольку в полете ускорители несколько отклоняются от своего первоначального положения, небольшая собственная система наведения, расположенная в передней сборке, выдает компьютерам корабля скорректированные данные.
Топливный блок. Во внешнем топливном блоке находится топливо, необходимое для работы трех основных ЖРД "Шаттла". Его длина 46,9 м, диаметр 8,3 м, сухая масса 30 000 кг, масса топлива до 700 000 кг. За исключением нескольких специальных деталей, топливный блок сделан из панелей алюминиевого сплава, отштампованных и сваренных между собой.
Топливный блок содержит два бака: один - в форме яйца - с жидким кислородом, а другой - цилиндрический - с жидким водородом. Поскольку плотность жидкого кислорода много больше, более тяжелый кислородный бак помещен выше, чтобы облегчить центровку "Шаттла".
Бочкообразный межбаковый отсек представляет собой массивную оребренную конструкцию, приваренную к верхнему днищу водородного бака и нижнему днищу кислородного бака. Мощный коробчатый шпангоут межбакового отсека несет передние узлы крепления двух твердотопливных ускорителей. По двум магистралям питания диаметром 43 см, которые проходят через нижний узел крепления РДТТ, водород и кислород подаются в основные ЖРД корабля.
Топливный блок также обеспечивает конструктивную прочность всей системы. "Орбитер", как и ускорители, крепится к топливному блоку в двух точках. Каждый ускоритель дополнительно крепится шаровым шарнирным соединением вблизи своей вершины на уровне межбакового отсека и тремя распорками около основания топливного блока. Верхнее соединение воспринимает тяговое усилие от ускорителей, а нижнее фиксирует ускоритель на месте. "Орбитер" удерживается нижним узлом крепления и передним креплением типа сошки. Нижнее крепление представляет собой коробчатую балку, удерживаемую на топливном блоке двумя двойными распорками с двумя мощными пироболтами, которыми крепится днище корабля в районе хвостовой части фюзеляжа. Тяговое усилие основных двигателей корабля воспринимается нижним узлом крепления. Верхний узел крепления удерживает нос корабля в правильном положении при нахождении на стартовом столе и во время подъема.
Звездолёт         
Звездолёт — космический аппарат (космический корабль), способный перемещаться между звёздами, не являющимися компонентами одной и той же двойной/кратной звезды, совершая таким образом межзвёздный полёт.
звездолёт         
м. разг.
Летательный аппарат для полета в космос.

Wikipedia

Звездолёт

Звездолёт — космический аппарат (космический корабль), способный перемещаться между звёздами, не являющимися компонентами одной и той же двойной/кратной звезды, совершая таким образом межзвёздный полёт.

Для того чтобы космический аппарат стал звездолётом, достаточно, чтобы он набрал третью космическую скорость, либо использовал гравитационный манёвр. В настоящее время звездолётами второго типа являются покинувшие Солнечную систему аппараты «Пионер-10», «Пионер-11», «Вояджер-1», «Вояджер-2».

Существует версия, что сигнал «Wow!» был отправлен с перемещающегося инопланетного звездолёта-автомата.

¿Qué es КОСМИЧЕСКИЙ КОРАБЛЬ ШАТТЛ: КОНСТРУКЦИЯ? - significado y definición